일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- Python3
- 머신러닝
- 데이터사이언스
- LeetCode
- 생성형AI
- 코드업파이썬
- 파이썬
- 클라우드
- two-pointer
- 구글퀵랩
- 알고리즘
- 코드업
- Python
- 투포인터
- Blazor
- 릿코드
- gcp
- 리트코드
- 파이썬알고리즘
- Microsoft
- 빅데이터
- 파이썬기초
- codeup
- C#
- nlp
- GenerativeAI
- 자연어처리
- 파이썬기초100제
- GenAI
- Azure
- Today
- Total
목록데이터파이프라인 (2)
Tech for good

목차 6. 빅데이터 분석 기반의 구축 6.4. 클라우드 서비스에 의한 데이터 파이프라인 6.4.1. 데이터 분석과 클라우드 서비스의 관계 6.4.2. 아마존 웹 서비스(AWS) 6.4.3. 구글 클라우드 플랫폼(GCP) 6. 빅데이터 분석 기반의 구축 6.4. 클라우드 서비스에 의한 데이터 파이프라인 빅데이터를 위한 분산 시스템은 자신이 직접 구축, 유지, 보수하는 것이 아니라 클라우드 서비스를 사용하는 경우가 많아지고 있다. 이 절에서는 몇 가지 클라우스 서비스의 특징과 그 차이점에 대해 예를 들어 설명한다. 이 절에서는 다음의 클라우드 서비스에 의한 데이터 파이프라인에 대해서 설명한다. - 아마존 웹 서비스(AWS) - 구글 클라우드 플랫폼(GCP) 6.4.1. 데이터 분석과 클라우드 서비스의 관계 ..

목차 1. 빅데이터의 기초 지식 1.2. 빅데이터 시대의 데이터 분석 기반 1.2.1. 빅데이터의 기술 - 분산 시스템을 활용해서 데이터를 가공해 나가는 구조 ① 데이터 파이프라인 - 데이터 수집에서 워크플로우 관리까지 ② 데이터 수집 - 벌크 형과 스트리밍 형의 데이터 전송 ③ 스트림 처리와 배치 처리 ④ 분산 스토리지 - 객체 스토리지, NoSQL 데이터베이스 ⑤ 분산 데이터 처리 - 쿼리 엔진, ETL 프로세스 ⑥ 워크플로우 관리 1.2.2. 데이터 웨어하우스와 데이터 마트 - 데이터 파이프라인 기본형 1.2.3. 데이터 레이크 - 데이터를 그대로 축적 ① 데이터 레이크와 데이터 마트 - 필요한 데이터는 데이터 마트에 정리 1.2.4. 데이터 분석 기반을 단계적으로 발전시키기 ① 애드 혹 분석 및 ..