일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- GenAI
- 클라우드
- 코드업
- 코드업파이썬
- LeetCode
- 빅데이터
- 코드업100제
- 파이썬알고리즘
- Python
- 생성형AI
- 자연어처리
- Microsoft
- codeup
- C#
- 파이썬기초100제
- 파이썬
- DataScience
- 구글퀵랩
- TwoPointer
- Blazor
- gcp
- 알고리즘
- 데이터사이언스
- GenerativeAI
- 머신러닝
- Azure
- nlp
- 투포인터
- 리트코드
- 파이썬기초
- Today
- Total
목록구글퀵랩 (5)
Tech for good
![](http://i1.daumcdn.net/thumb/C150x150.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/FFGRE/btsHXlOk8Fm/ov9wCbSrgg4wU0j0o49ls0/img.png)
01. Use Gemini to generate written content 02. Use Gemini to refine written content 03. Proofread your document for spelling, grammar, style, and word choice by using Gemini
![](http://i1.daumcdn.net/thumb/C150x150.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/kVo2Y/btswgXRKZI2/3n7vtPZLGQnMRiAVjihCA1/img.png)
https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x Generative AI Learning Path https://goo.gle/LearnGenAI www.youtube.com Introduction 1. Pass images to encoder 2. Extract information from the images 3. Create some feature vectors 4. Vectors are passed to the decoder 5. Build captions by generating words, one by one. Decoder It gets words one by one and makes the informatio..
![](http://i1.daumcdn.net/thumb/C150x150.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/vp0hB/btssqzGTrvR/iEiAFXrzfIewWxL5tY62LK/img.png)
https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x Generative AI Learning Path https://goo.gle/LearnGenAI www.youtube.com Google will not design or deploy AI in these four application areas:
![](http://i1.daumcdn.net/thumb/C150x150.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bLjCYh/btssgGNPlWh/jsaR1tencwaESH4DaV3kaK/img.png)
https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x Generative AI Learning Path https://goo.gle/LearnGenAI www.youtube.com Pre-trained: for general purpose with a large data set Fine-tuned: for specific aims with a much smaller data set Transformer model (e.g. PaLM) A transformer model consists of encoder and decoder. Encoder - encodes the input sequence and passes it to the..
![](http://i1.daumcdn.net/thumb/C150x150.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/lZbCq/btssijxHPbW/0z8ncGekuZ3jhd3bmpaV4K/img.png)
https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x Generative AI Learning Path https://goo.gle/LearnGenAI www.youtube.com semi-supervised learning = 소량의 labeled data + 대량의 unlabeled data The labeled data -> neural network이 task의 basic concepts을 알 수 있게 도와줌. The unlabeled data -> neural network이 새로운 예시들을 일반화할 수 있게 도와줌.