일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 니트코드
- stratascratch
- 릿코드
- Python
- 구글퀵랩
- 파이썬알고리즘
- Python3
- GenAI
- nlp
- GenerativeAI
- sql코테
- codeup
- 리트코드
- 알고리즘
- 투포인터
- 파이썬
- 슬라이딩윈도우
- 코드업
- LeetCode
- SQL
- 자연어처리
- dfs
- 생성형AI
- gcp
- Microsoft
- two-pointer
- heap
- medium
- 파이썬기초100제
- slidingwindow
Archives
- Today
- Total
목록벡터 (1)
Tech for good

(한국어 임베딩(Sentence Embeddings Using Korean Corpora) - 이기창 지음 / NAVER Chatbot Model 감수) 목차 2. 벡터가 어떻게 의미를 가지게 되는가 2.1. 자연어 계산과 이해 2.2. 어떤 단어가 많이 쓰였는가 2.2.1. 백오브워즈 가정 2.2.2. TF-IDF 2.2.3. Deep Averaging Network 2.3. 단어가 어떤 순서로 쓰였는가 2.3.1. 통계 기반 언어 모델 2.3.2. 뉴럴 네트워크 기반 언어 모델 2.4. 어떤 단어가 같이 쓰였는가 2.4.1. 분포 가정 2.4.2. 분포와 의미 (1): 형태소 2.4.3. 분포와 의미 (2): 품사 2.4.4. 점별 상호 정보량 2.4.5. Word2Vec 2.5. 이 장의 요약 2...
IT/Data Science
2021. 4. 14. 16:58