일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
Tags
- Python3
- 릿코드
- 생성형AI
- nlp
- two-pointer
- 투포인터
- slidingwindow
- 파이썬
- 리트코드
- 니트코드
- Stack
- dfs
- SQL
- 코드업
- 자연어처리
- 파이썬기초100제
- stratascratch
- GenerativeAI
- codeup
- heap
- Python
- array
- GenAI
- Greedy
- 파이썬알고리즘
- 알고리즘
- 슬라이딩윈도우
- LeetCode
- sql코테
- gcp
Archives
- Today
- Total
Tech for good
[Google Cloud Skills Boost(Qwiklabs)] Introduction to Generative AI Learning Path - 5. Introduction to Image Generation 본문
IT/Cloud
[Google Cloud Skills Boost(Qwiklabs)] Introduction to Generative AI Learning Path - 5. Introduction to Image Generation
Diana Kang 2023. 9. 4. 21:16https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x
Generative AI Learning Path
https://goo.gle/LearnGenAI
www.youtube.com
- GANs
- One neural network (Generator) -> creates images
- The other neural network (Discriminator) -> predicts if the image is real or fake
- Forward diffusion
- Start with a clean image and add noise iteratively
- Reverse diffusion
- Start with a noisy image and remove noise iteratively
- From the pure noise, we could have a model that will be able to synthesize a novel image.