일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- LeetCode
- Blazor
- 투포인터
- GenerativeAI
- Azure
- 생성형AI
- 코드업
- 파이썬
- 구글퀵랩
- C#
- 파이썬알고리즘
- 빅데이터
- Python
- DataScience
- 코드업파이썬
- GenAI
- gcp
- 코드업100제
- nlp
- codeup
- 파이썬기초
- 데이터사이언스
- 파이썬기초100제
- 머신러닝
- TwoPointer
- 클라우드
- 알고리즘
- Microsoft
- 리트코드
- 자연어처리
Archives
- Today
- Total
Tech for good
[Google Cloud Skills Boost(Qwiklabs)] Introduction to Generative AI Learning Path - 5. Introduction to Image Generation 본문
IT/Cloud
[Google Cloud Skills Boost(Qwiklabs)] Introduction to Generative AI Learning Path - 5. Introduction to Image Generation
Diana Kang 2023. 9. 4. 21:16https://www.youtube.com/playlist?list=PLIivdWyY5sqIlLF9JHbyiqzZbib9pFt4x
Generative AI Learning Path
https://goo.gle/LearnGenAI
www.youtube.com
- GANs
- One neural network (Generator) -> creates images
- The other neural network (Discriminator) -> predicts if the image is real or fake
- Forward diffusion
- Start with a clean image and add noise iteratively
- Reverse diffusion
- Start with a noisy image and remove noise iteratively
- From the pure noise, we could have a model that will be able to synthesize a novel image.