일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- slidingwindow
- 생성형AI
- 니트코드
- GenerativeAI
- codeup
- medium
- gcp
- 자연어처리
- two-pointer
- 릿코드
- 파이썬
- 리트코드
- 코드업
- Python3
- heap
- 슬라이딩윈도우
- 파이썬기초100제
- dfs
- 파이썬알고리즘
- stratascratch
- sql코테
- nlp
- GenAI
- 구글퀵랩
- 알고리즘
- 투포인터
- Python
- Microsoft
- SQL
- LeetCode
Archives
- Today
- Total
목록문서별토픽분포 (1)
Tech for good

목차 6. 토픽 모델링(Topic Modeling) 6.2. 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 6.2.1. 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 개요 6.2.2. LDA의 가정 6.2.3. LDA의 수행하기 6.2.4. 잠재 디리클레 할당(LDA)과 잠재 의미 분석(LSA)의 차이 6.2.5. 실습을 통한 이해 (1) 정수 인코딩과 단어 집합 만들기 (2) LDA 모델 훈련시키기 (3) LDA 시각화하기 (4) 문서 별 토픽 분포 보기 6. 토픽 모델링(Topic Modeling) 6.2. 잠재 디리클레 할당(Latent Dirichlet Allocation; LDA) 토픽 모델링은 문서의 집합에서 토픽을 찾아내는 ..
IT/Data Science
2021. 10. 14. 11:44