일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- GenerativeAI
- 파이썬알고리즘
- Python
- Python3
- 릿코드
- gcp
- 니트코드
- 구글퀵랩
- two-pointer
- medium
- 알고리즘
- codeup
- GenAI
- 생성형AI
- slidingwindow
- stratascratch
- heap
- 파이썬
- 리트코드
- sql코테
- 파이썬기초100제
- dfs
- 코드업
- Microsoft
- nlp
- 투포인터
- 자연어처리
- 슬라이딩윈도우
- LeetCode
- SQL
- Today
- Total
목록벡터의유사도 (2)
Tech for good

목차 5. 벡터의 유사도(Vector Similarity) 5.2. 여러가지 유사도 기법 5.2.1. 유클리드 거리(Euclidean distance) 5.2.2. 자카드 유사도(Jaccard similarity) 5. 벡터의 유사도(Vector Similarity) 5.2. 여러가지 유사도 기법 문서의 유사도를 구하기 위한 방법으로는 코사인 유사도 외에도 여러가지 방법들이 있다. 여기서는 문서의 유사도를 구할 수 있는 다른 방법들을 학습한다. 5.1.1. 유클리드 거리(Euclideam distance) 유클리드 거리(euclidean distance)는 문서의 유사도를 구할 때 자카드 유사도나 코사인 유사도만큼, 유용한 방법은 아니다. 하지만 여러 가지 방법을 이해하고, 시도해보는 것 자체만으로 다른..

목차 5. 벡터의 유사도(Vector Similarity) 5.1. 코사인 유사도(Cosine Similarity) 5.1.1. 코사인 유사도(Cosine Similarity) 5.1.2. 유사도를 이용한 추천 시스템 구현하기 5. 벡터의 유사도(Vector Similarity) 문서의 유사도를 구하는 일은 자연어 처리의 주요 주제 중 하나이다. 사람들이 인식하는 문서의 유사도는 주로 문서들 간에 동일한 단어 또는 비슷한 단어가 얼마나 공통적으로 많이 사용되었는지 의존한다. 기계도 마찬가지이다. 기계가 계산하는 문서의 유사도의 성능은 각 문서의 단어들을 어떤 방법으로 수치화하여 표현했는지(DTM, Word2Vec 등), 문서 간의 단어들의 차이를 어떤 방법(유클리드 거리, 코사인 유사도 등)으로 계산했는..